Speckle Noise Reduction and Segmentation on Polarization Sensitive Optical Coherence Tomography Images
نویسندگان
چکیده
The retinal layers of a monkey were imaged using a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system in an effort to develop a clinically reliable automatic diagnostic system for glaucoma. Glaucoma is characterized by the progressive loss of ganglion cells and axons in the retinal nerve fiber layer (RNFL). Automatic segmentation of the RNFL from the PS-OCT images is a fundamental step to diagnose the progress of the disease. Due to the use of a coherent light, speckle noise is inherent in the images. Wavelet denoising techniques with a combination of image processing techniques were applied to remove the speckle noise in the PS-OCT images, and a fuzzy logic classifier was used to segment the RNFL. A significant signal to noise ratio improvement was observed qualitatively and quantitatively after the denoising. The upper boundary for the RNFL was reliably detected, but the lower boundary detection still remains as a problem. Keywords—PS-OCT, speckle noise, wavelet denoising,
منابع مشابه
Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملBirefringence measurements in human skin using polarization-sensitive optical coherence tomography.
Optical coherence tomography enables cross-sectional imaging of tissue structure to depths of around 1.5 mm, at high-resolution and in real time. Incorporation of polarization sensitivity (PS) provides an additional contrast mechanism which is complementary to images mapping backscattered intensity only. We present here polarization-sensitive optical coherence tomography (OCT) images of human s...
متن کاملWavelet domain compounding for speckle reduction in optical coherence tomography.
Visibility of optical coherence tomography (OCT) images can be severely degraded by speckle noise. A computationally efficient despeckling approach that strongly reduces the speckle noise is reported. It is based on discrete wavelet transform (DWT), but eliminates the conventional process of threshold estimation. By decomposing an image into different levels, a set of sub-band images are genera...
متن کاملSpeckle reduction in optical coherence tomography images based on wave atoms.
Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and bet...
متن کامل